Ergodic theorems for extended real-valued random variables
نویسندگان
چکیده
منابع مشابه
Probability Generating Functions for Discrete Real Valued Random Variables
The probability generating function is a powerful technique for studying the law of finite sums of independent discrete random variables taking integer positive values. For real valued discrete random variables, the well known elementary theory of Dirichlet series and the symbolic computation packages available nowadays, such as Mathematica 5 TM, allows us to extend to general discrete random v...
متن کاملErgodic Theorems for Random Group Averages
This is an earlier, but more general, version of ”An L Ergodic Theorem for Sparse Random Subsequences”. We prove an L ergodic theorem for averages defined by independent random selector variables, in a setting of general measure-preserving group actions. A far more readable version of this paper is in the works.
متن کاملProbability on Finite Set and Real-Valued Random Variables
One can prove the following four propositions: (1) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a σ-measure on S1, f be a partial function from X to R, E be an element of S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f and M(E) < +∞ and for every element x of X such that x ∈ E holds a ≤ f(x). Then R(a) ·M(E) ≤ ∫ f E dM. (2) Let X be a non empty set, S1 ...
متن کاملRandom Ergodic Theorems with Universally Representative
When elements of a measure-preserving action of R d or Z d are selected in a random way, according to a stationary stochastic process, a.e. convergence of the averages of an L p function along the resulting orbits may almost surely hold, in every system; in such a case we call the sampling scheme universally representative. We show that i.i.d. integer-valued sampling schemes are universally rep...
متن کاملErgodic Theorems over Sparse Random Subsequences
We prove an L subsequence ergodic theorem for sequences chosen by independent random selector variables, thereby showing the existence of universally L-good sequences nearly as sparse as the set of squares. We extend this theorem to a more general setting of measure-preserving group actions. In addition, we use the same technique to prove an L almost everywhere convergence result for a modulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2010
ISSN: 0304-4149
DOI: 10.1016/j.spa.2010.05.008